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Abstract 
 
The appropriate operation of a tunnel ventilation system provides drivers passing through the tunnel with 

comfortable and safe driving conditions. Tunnel ventilation involves maintaining CO pollutant concentration and VI 
(visibility index) under an adequate level with operating highly energy-consuming facilities such as jet-fans. Therefore, 
it is significant to have an efficient operating algorithm in aspects of a safe driving environment as well as saving 
energy. In this research, a reinforcement learning (RL) method based on the actor-critic architecture and nonparametric 
policy gradients is applied as the control algorithm. The two objectives listed above, maintaining an adequate level of 
pollutants and minimizing power consumption, are included into a reward formulation that is a performance index to be 
maximized in the RL methodology. In this paper, a nonparametric approach is adopted as a promising route to perform 
a rigorous gradient search in a function space of policies to improve the efficacy of the actor module. Extensive 
simulation studies performed with real data collected from an existing tunnel system confirm that with the suggested 
algorithm, the control purposes were well accomplished and improved when compared to a previously developed RL-
based control algorithm. 
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1. Introduction 

Recently, as the number of vehicles passing through 
tunnels has increased and the length of newly 
constructed tunnels has been extended, tunnel venti-
lation systems have drawn a great deal of interest [1,2]. 
All internal combustion engines produce exhaust gases 
containing noxious compounds and smoke such as CO, 
HC, NOx, dust etc. The toxic substances in the 
vehicular tunnels may cause fatal harm to the human 
body, and the low VI (visibility index) induced by 
smoke may considerably reduce drivers’ safety due to  

poor visibility and even cause traffic accidents. 
Therefore, the amount of these substances should not 
exceed acceptable levels. A tunnel ventilation system 
provides drivers with a comfortable and safe driving 
environment by generating a sufficient amount of 
airflow and diluting the concentrations of noxious and 
dangerous contaminants to acceptable levels. In order 
to achieve this purpose, a tunnel ventilation system 
operates mechanical equipment such as jet-fans, 
blowers and dust collectors which consume large 
amount of energy. Therefore, it is desired to have an 
efficient operating algorithm for the tunnel ventilation 
in the aspects of saving energy as well as safe and 
comfortable driving environments. 

The pollutants in a tunnel are exhausted from 
passing vehicles as moving sources. Moreover, their 
transient behavior is characterized by a time delay. 
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Due to the complex and nonlinear system, it is difficult 
to control tunnel ventilation systems with conventional 
control methods. One of popular control methods for 
such systems is fuzzy logic control, and there have 
been many studies for tunnel ventilation control using 
fuzzy logic [3-5]. However, the tunnel ventilation 
control using the fuzzy logic has a few problems for 
building a rule database and determining appropriate 
membership functions. To overcome such problems, 
the reinforcement learning (RL) method was al-
ternatively employed by us in [6]. This study basically 
follows the RL methodology [6] as the control scheme 
but with an improved learning algorithm. The RL 
method is a goal-directed learning of a mapping from 
situations to actions without relying on exemplary 
supervision or complete models of the environment. 
The goal of RL is to maximize a reward or 
reinforcement signal which is an evaluative feedback 
from the environment. In the process of constructing a 
reward of the tunnel ventilation system, maintaining 
pollutant concentration level under an allowable limit 
is the most important purpose. Energy consumption is 
also a significant factor and included in the reward 
formulation. Consequently, the controller used in this 
study is designed to optimally satisfy both control 
objectives through the learning process of RL. 

RL has been an active research area in machine 
learning, control engineering, etc. [7-11]. Among 
many categories of RL, this study is based on the 
actor-critic algorithm which is sometimes called an 
adaptive-heuristic-critic (AHC) learning architecture 
[9]. In this class of learning structure, the controller is 
divided into two components: the critic (evaluation) 
module and the actor (control) module. Both modules 
have their own learning processes, respectively. In this 
research, the actor adjustment is determined by the 
‘nonparametric policy gradient’ method which per-
forms a gradient-based policy search in the feature 
space associated with the Gaussian kernel function 
[12]. Note that the policy search in a reproducing 
kernel Hilbert space gives a rigorous extension of the 
conventional policy search techniques to non-
parametric settings [13]. The critic module is adjusted 
by the ‘recursive least-squares (RLS)’ based esti-
mation algorithm in order to improve the efficiency of 
the use of data [14]. While most of previous studies 
about RL concentrated on narrow application areas 
such as controlling an inverted pendulum or a few 
robotics problems, this research shows that RL can be 
also implemented in various real-world systems.  

Table 1. Specifications of Dunnae tunnel. 
 

Tunnel Dunnae 

Length 3,300 m 

Width 9.2 m 

Height 7.2 m 

Lane 2 

Cross-sectional area 65.65 m2 

Ventilation Jet-fan type 

 

 
 
Fig. 1. Schematic diagram of Dunnae tunnel with jet-fans. 

 
This paper is organized as follows. In Section 2, the 

target tunnel ventilation system is briefly introduced. 
In Section 3, the basic concepts of the RL and an 
actor-critic algorithm based on nonparametric policy 
gradient and RLS estimation scheme are described for 
tunnel ventilation control. Then, in Section 4, the 
results of simulations studies performed with real data 
collected from the target tunnel system are shown and 
the performance of the suggested controller is com-
pared with a previously developed RL-based al-
gorithm. It is confirmed that the suggested controller 
shows higher performance in terms of both main-
taining pollutant concentration level under an al-
lowable limit and saving energy consumption com-
pared with the previously developed RL-based 
algorithm. Finally, the last section contains concluding 
remarks. 
 

2. Tunnel ventilation system 

The Dunnae Tunnel located on Youngdong high-
way in Korea was selected as the target system for 
this study. Fig. 1 and Table 1 show a schematic 
diagram and detailed specifications of the tunnel, 
respectively [6]. To observe the pollutant levels, CO 
and VI sensors were installed inside the tunnel at an 
appropriate interval. The traffic counter located at the 
tunnel entrance records the number of cars entering 
the tunnel. In order to ventilate the pollutants, a total 
of 32 jet-fans was installed on the ceiling. 

The distribution of the pollutants inside the tunnel 
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is usually expressed as a one-dimensional diffusion-
advection equation [2, 4, 5], 

 

w

c c ck V q
t x x x
∂ ∂ ∂ ∂⎛ ⎞= − +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (1) 

 
where c  is the pollutant concentration, x  is the 
distance from the entrance of the tunnel, wV  is the 
wind velocity and k  is the diffusion coefficient. The 
first term on the right-hand side explains the diffusion 
of the pollutants and the second term does the 
advection by wind. The pollutant source q  from 
vehicles passing through the tunnel increases the 
pollutant level inside the tunnel, which is the only 
source to determine the tunnel pollutant distribution. 
This information is obtained from the real data 
collected from the target tunnel system for 
simulations. However, because the advection and 
source terms generally dominate the pollutant dis-
tribution, the diffusion term is often ignored. Then, 
the one-dimensional advection equation can be 
rewritten as 
 

w

c cV q
t x
∂ ∂= − +
∂ ∂

   (2) 

 
To estimate the change in pollutant distribution, it 

is necessary to identify the wind velocity inside the 
tunnel. It can be calculated by the force balance 
equation, which is expressed as 

 
w

t j r n

dVAL F
dt

F F F F F

ρ =

= + + +

∑
∑

 (3) 

 
where ρ  is the density of air, A  is the cross-
sectional area of the tunnel, and L  is the 
longitudinal length of the tunnel. F∑  is the 

summation of the forces that affect the wind in its 
flow velocity inside the tunnel [15-17], which consist 
of following four elements: 
 

- tF : the traffic ventilation force by passing 
vehicles 

- jF : the equipment ventilation force by jet-fan 
operation 

- rF : the combination of the wall friction resistance 
and fluent loss at the entrance and exit 

- nF : the wind resistance by the natural wind 

outside the tunnel 
 

Eqs. (2) and (3) are used for simulations evaluating 
the suggested controller and comparing with con-
ventional algorithms. tF  is the traffic ventilation 
force by piston effect of vehicles passing through the 
tunnel. This traffic ventilation force is caused by drag 
force of vehicles which is composed of form drag 
configured by pressure-drop at the front of vehicles 
and pressure-recovery at the end of vehicles, and 
frictional drag induced by flow on the surface of 
vehicles. Since the piston effect by form drag 
dominates the traffic ventilation force, we considered 
only the piston effect by form drag for simulations, 
which is presented by 

 

1

( )
2

t

k k

N

t d v k w k w
k

F C A V V V Vρ
=

= − −∑  (4) 

 
where tN  is the total number of vehicles in the 
tunnel, 

kdC  is the drag coefficient depending on 
vehicle type, 

kvA  is the frontal area of vehicle, and 
kV  is the speed of vehicle. The number, speed, and 

type of vehicle are measured by the traffic counter 
and speedometer equipped at the entrance of the 
tunnel. Table 2 shows the frontal area and the drag 
coefficient depending on vehicle type and cross-
sectional area of the tunnel. 

The equipment ventilation force by jet-fan 
operation, jF , is formulated by 

 
( )j j j j j wF N A V V Vη ρ= −  (5) 

 
where η  is the pressure-rise coefficient of jet-
fan, jA

 
is the cross-sectional area of jet-fan, jN  is 

the number of jet-fans currently running, and jV  is 
the wind velocity discharged from jet-fan. The thrust 
force by jet-fan cannot be completely transferred to 
the ventilation force due to influences of wind 
velocity inside the tunnel, setup interval between 
equipment, gap between jet-fan and ceiling, and so on. 
Therefore, the pressure-rise efficiency is usually 
known as 80 to 95% [18]. In this study, the number of 
running jet- fans is the control variable manipulated 
by the controller. To achieve the control purposes of 
the target system, an RL-based intelligent controller 
which optimally adjusts the number of running jet-
fans, will be designed in the following chapters. 
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Table 2. Frontal area and drag coefficient depending on vehicle type and cross-sectional area of the tunnel. 
 

Cross-sectional area (m2) 143 98 75 58 42 

Vehicle type Large  Small Large Small Large Small Large Small Large  Small

Frontal area (m2), vA  7.11 2.31 7.11 2.31 7.11 2.31 7.11 2.31 7.11 2.31

Drag coefficient, dC  0.74 0.48 0.92 0.53 1.09 0.59 1.31 0.66 1.68 0.78

 
 

Friction resistance, rF , is modeled in terms of the 
wall friction resistance and fluent loss at the entrance 
and exit like the following: 

 

2 2

2

r w w i w w

e w w

LF f AV V AV V
D

AV V

ρ ρζ

ρζ

= − −

−
 (6) 

 
where f  is the friction resistance coefficient of the 
tunnel wall, D  is the hydraulic diameter of the 
tunnel, and iζ  and eζ  are the friction loss 
coefficients at the entrance and exit, respectively. The 
wall fiction resistance acts in the opposite direction of 
the flow and induces the increase of the thrust force of 
the tunnel ventilation equipment. Since this resistance 
force is caused by the wall friction inside the tunnel, it 
can be represented as a head loss equation due to the 
friction in the pipe or duct system. The friction 
resistance coefficient is generally assumed as 0.025 
from empirical formula [19]. And the fluent loss at 
the entrance and exit is calculated by the frictional 
loss due to flow separation at the entrance and exit. 
The friction loss coefficient at the exit is chosen as 1 
under turbulence flow condition, and the friction loss 
coefficient at the entrance is assumed as 0.6 in the 
case of round-type entrance [19]. 

The change in the pressure at the entrance and exit 
of the tunnel can be considered by the wind resistance 
by the natural wind outside the tunnel, nF , which 
was studied by Blendermann [19]. It is represented as 
following equation, 

 
2 cos cos

2n n nF C AVρ ψ ψ=  (7) 

 
where nC  is the geometric compensation coefficient 
according to the shape of the entrance and exit, which 
is chosen as 0.25 [19], nV  is the velocity of the 
natural wind, and ψ  is the incidence angle of the 
external wind heading toward the entrance or exit of 
the tunnel, which is assumed as 0 degree. 

 
3. An actor-critic method employing nonparametric 

policy gradients 

In this section, the RL algorithm based on the 
actor-critic architecture and nonparametric policy 
gradients is derived to solve the tunnel ventilation 
control problem. The derived algorithm draws control 
efforts from the actor distribution, and the adjustment 
is based on the strategy of performing a gradient-
based search in the feature space associated with the 
Gaussian kernel function, which leads to an actor 
distribution update in a nonparametric setting. 

 
3.1 Preliminaries 

The actor-critic model includes two principal 
components, the critic (evaluation) module and the 
actor (control) module [7, 9]. The actor is used to 
generate optimal control actions according to a certain 
policy. The critic is used to evaluate the policy 
represented by the actor and to provide the actor with 
evaluation information. The critic and actor modules 
gradually converge toward optimal performance with 
their own learning processes. In this research, the 
actor adjustment is determined by nonparametric 
policy gradients, and the critic adjustment is decided 
by an RLS-based estimation algorithm. 

Like other RL methodologies, the actor-critic 
algorithm is distinguished from different kinds of 
computational approaches by emphasizing the direct 
interaction with its environment, without relying on 
exemplary supervision or complete models of the 
environment. The critic receives the state vector and 
the external reinforcement signal, the reward which is 
an evaluative feedback, from the environment as 
inputs, and transforms them into the evaluation 
information for actor’s policy improvement. Using 
the information from the critic and the environment, 
the actor outputs the control actions that tend to 
increase the long-run sum of the reward and gradually 
updates itself for more optimal performance. 

General RL problems [7] can be represented via 
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states s S∈ , actions a A∈ , rewards r R∈ , and 
time steps {0,1,2, }t∈ L , in which a learning agent 
interacts with an environment. The objective of the 
learning agent is to pursue a policy that can maximize 
the discounted sum of rewards, 

 

0
0

( ) | , ,i
i

i

J E r sπ γ π
∞

=

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑  (8) 

 
where (0,1)γ ∈  is the discount rate, ir  is the 
immediate reward observed after the state transition 
from state is  to 1is + , 0s  is a designated start state, 
and π  denotes the policy from which actions are 
chosen. Note that the case with the start state not 
fixed on a designated place but distributed across the 
state space can be easily handled by employing a 
probability distribution function for the start state. 
The action generating policies can be deterministic or 
stochastic, and when it is stochastic as in this paper, 
the policy is generally described by a conditional 
probability: 
 

( | ) { | }.t ta s p a a s sπ = =  (9) 
 
Note that by introducing the state value function 
 

0

( ) | ,i
t i t

i

V s E r s sπ γ π
∞

+
=

⎧ ⎫=⎨ ⎬
⎩ ⎭
∑  (10) 

 
and the state-action value function 
 

0

( , ) | , , ,i
t i t t

i

Q s a E r s s a aπ γ π
∞

+
=

⎧ ⎫= =⎨ ⎬
⎩ ⎭
∑  (11) 

 
one can rewrite the objective function in the 
following form [10]: 
 

0

0 0

( ) ( )

( | ) ( , )

( ) ( | ) ( , ) ,
A

S A

J V s

a s Q s a da

d s a s r s a dads

π

π

π

π

π

π

=

=

=

∫
∫ ∫

 (12) 

 
where ( )d sπ  and ( , )r s a  are a discounted state 
distribution and the expected reward, respectively. 

 
3.2 Critic trained by RLS-TD( λ ) 

As mentioned before, the essence of the actor-critic 
methods is in using separate parameterized families 

for the actor part which is represented by the policy 
distribution ( | )a sθπ , and the critic part which is 
represented by value functions. For the parameterized 
families for the critic part, this paper considers the 
function of the form 

 
( ) ( ) ,T

vV s s vφ%   (13) 
 
which approximates the state value function ( )V sθπ  
for action-generating policy θπ . Also, for the 
training of the critic part, we use the strategy of RLS-
TD( λ ) [14], derivation of which is described below 
for readers’ convenience. From the Bellman 
equations [7, 10] 
 

( , ) ( , ) ( | , ) ( ) ,

( ) ( | ) ( , ) ,
S

A

Q s a r s a p s s a V s ds

V s a s Q s a da

θ θ

θ θ

π π

π π

γ

π

′ ′ ′= +

=

∫
∫

 (14) 

 
one can see that through a sampled trajectory, 

( )i
iV sθπ  can be approximated by 1( )i

i ir V sθπγ ++ ; 
thus 1( )i v ir V sγ ++ %  is a valid estimate for the ( )i

iV sθπ . 
Also from the usual strategy using the eligibility trace 
[7], one can see that in order for the approximator 

( )vV s%  to be useful in the t -th time step, it is 
desirable to minimize the following: 
 

2

1
0

2

1
0 0

( ) ( ( ) ( ( ))

( ( ) ( )) ,

t

t i v i i v i
i

t t
T T

i i i i i
i i

v z V s r V s

z s s v z r

γ

φ γφ

+
=

+
= =

Ψ − +

= − −

∑

∑ ∑

% %

 (15) 

 
where iz  is the eligibility trace vector defined via 
 

1

0 0

( ), 1,2, ,
( ),

i i iz z s i
z s

γλ φ
φ

−= + =
=

L
 (16) 

 
and [0,1]λ ∈  is the trace-decay parameter. Note that 
minimizing Eq. (15) is simply a least-squares problem 
utilizing the entire history of agent-environment 
interactions up to the t -th time step. When there is a 
need to put more emphasis on recent observations, the 
use of the so-called forgetting factor (0,1)β ∈  is 
desirable. In this case, the following needs to be used 
instead of Eq. (15). 
 

2( ) ,t t tv Av bΨ −%   (17) 
 
where  
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1
0

( ( ) ( )),
t

t i T T
t i i i

i

A z s sβ φ γφ−
+

=

−∑  (18) 

0

.
t

t i
t i i

i

b z rβ −

=
∑  (19) 

 
Note that for 1t ≥ , the above tA  and tb  can be 
written in the following recursive form: 

 
1 1( ( ) ( )),T T

t t t t tA A z s sβ φ γφ− += + −  (20) 

1 .t t t tb b z rβ −= +  (21) 
 
Also, note that when tA  is invertible, the optimal 
solution to the problem of minimizing Eq. (17) is 
obviously 
 

1 .t t tv A b−=  (22) 
 
However, tA  is usually not invertible until a 
sufficient number of samples have been included in 
its summation. A common strategy used in the 
recursive least-squares method for ensuring the 
invertibility of tA  is to use Iδ  for its initialization 
[14]. Employing the strategy leads to the use of 
 

0 0 0 1( )( ( ) ( )),T TA I s s sδ φ φ γφ= + −  (23) 
 
where δ  is a positive number, instead of 
 

0 0 0 1

0 0 1

( ( ) ( ))
( )( ( ) ( )).

T T

T T

A z s s
s s s
φ γφ

φ φ γφ
= −
= −

 (24) 

 
Now, by applying the matrix inversion formula 
 

1 1 1 1 1 1( ) ( ) ,A XY A A X I YA X YA− − − − − −+ = − +  (25) 
 
to Eqs. (20)-(23), one can obtain recursive update 
rules for the solution tv  minimizing Eq. (17). More 
specifically, let 
 

0 0 0 1

1 1

1

( )( ( ) ( )),
( ( ) ( )) for 1,

for 0,

T T

T T
t t t t t

t t

A I s s s
A A z s s t
P A t

δ φ φ γφ
β φ γφ− +

−

= + −
+ − ≥

≥




 (26) 

 
and t t tK Pz  for 0t ≥ . Then with the update rules 

1

1 1 1
1

1 1

1

1 1

( ),

1 ( ( ) ( )) ,
( ( ) ( ))

,
( ( ) ( ))

t t t

T T
t t t t t

t t T T
t t t t

t t
t T T

t t t t

z z s

P z s s PP P
s s P z

P zK
s s P z

γλ φ

φ γφ
β β φ γφ

β φ γφ

−

− + −
−

+ −

−

+ −

= +

⎛ ⎞−= −⎜ ⎟+ −⎝ ⎠

=
+ −

 (27) 

the critic parameter vector tv  minimizing Eq. (17) 
can be obtained by 
 

1 1 1( ( ( ) ( )) .T T
t t t t t t tv v K r s s vφ γφ− + −= + − −  (28) 

 
Note that the resultant state approximator 

( ) ( )
t

T
v tV s s vφ=%  plays an important role in the update 

process for the actor part. In the following, we derive 
a way to incorporate the use of nonparametric policy 
gradients for updating the actor part. 

 
3.3 Actor trained via nonparametric policy gradients 

The main role of the actor is to generate actions via 
a parameterized family. At each state s S∈ , an 
action a A∈  is drawn in accordance with the 
conditional distribution ( | )a sθπ , where θ  is the 
parameter vector characterizing the distribution. Thus, 
the objective we seek to maximize can be written as 
follows: 

( ) ( ) ( ) ( | ) ( , ) .
S A

J J d s a s r s a dadsθπ
θπ θ π= = ∫ ∫  (29) 

One of the convenient strategies for seeking the best 
distribution parameter θ  is to utilize the direction of 

( )Jθ θ∇ , which is often called the policy gradient. 
According to the famous policy gradient theorem 
[8,10], the policy gradient can be written as follows1: 
 

( )
( )

( ) ( | ) ( , )

( ) ( | ) ( , )

( ) ( | )

( ( , ) ( ))

( ) ( | ) log ( | )

( ( , ) ( )) .

S A

S A

S A

S A

J

d s a s r s a dads

d s a s Q s a dads

d s a s

Q s a V s dads

d s a s a s

Q s a V s dads

θ

θ θ

θ

θ θ

θ

θ θ

θ

π
θ θ

π π
θ θ

π
θ θ

π π

π
θ θ θ

π π

θ

π

π

π

π π

∇

= ∇

= ∇

= ∇

⋅ −

= ∇

⋅ −

∫ ∫
∫ ∫
∫ ∫

∫ ∫

 (30) 

1Note that the equality  
 

( ) ( | ) ( , )

( ) ( | )( ( , ) ( ))

S A

S A

d s a s Q s a dads

d s a s Q s a V s dads

θ θ

θ θ θ

π π
θ θ

π π π
θ θ

π

π

∇

= ∇ −

∫ ∫
∫ ∫

 

 
holds true because ( , ) 0

A
s a daθπ∇ =∫  for s S∀ ∈ . Also note that in

this paper, we assume that the policy distribution θπ  
is such that the 

gradient log ( | )a sθ θπ∇  is well-defined. 
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From the Bellman equation [7, 10] 
 

( , ) ( , ) ( | , ) ( ) ,
S

Q s a r s a p s s a V s dsθ θπ πγ ′ ′ ′= + ∫  (31) 
 
We see that through a sampled trajectory, ( , )k

k kQ s aθπ  
can be approximated by 1( )k

t kr V sθπγ ++ ; thus 
1( )

kt v kr V sγ ++ %  and ( )
kv kV s%  are valid estimates for 

( , )k
k kQ s aθπ  and ( )k

kV sθπ , respectively. Hence, these 
approximation-steps via the sampled trajectory yield 
the following estimate: 
 

1

1

[ ( )]

( ) ( | ) log ( | )

( ( , ) ( ))

( ( , ) ( ))[ log ( | )]

( ( ) ( ))[ log ( | )]

( ( ) ( ) )
[ log ( | )]

t

t

t t

t

t t t
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t t t t t

t v t v t t t

T T
t t t t t

t t

J

d s a s a s

Q s a V s dads

Q s a V s a s

r V s V s a s

r s v s v
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θ

θ θ

θ θ

θ θ θ

π
θ θ θ

π π

θ θ

π π
θ θ θ θ

θ θ θ θ

θ θ

θ

π π

π

γ π

γφ φ
π

=

=

=

+ =

+

∇

= ∇

⋅ −

≈ − ∇

≈ + − ∇

= + −
⋅ ∇

∫ ∫

% %

tθ θ=

 (32) 

 
Therefore, one can update the actor parameter θ  via 
the following simple gradient-based rule: 
 

1

~

[ ( )]

(TD )[ log ( | )] ,

t

t

t t

tt t t

J

a s

θ θ θ

θ θ θ θ

θ θ α θ

θ α π

+ =

=

← + ∇

≈ + ∇
 (33) 

 
in which 0α >  is the learning rate, and 

~

TDt  is the 
temporal difference computed by 
 

~

1TD ( ) ( ).
t t

t t v t v tr V s V sγ ++ −% %  (34) 

 
In this paper, we consider the Gaussian actor policy 

whose distribution is set as 
 

2

2

1 ( ( ))( | ) exp .
22

Ta sa sθ
θ ψπ
σσ π

⎧ ⎫− −= ⎨ ⎬
⎩ ⎭

 (35) 

 
In order to make rich functional expressions possible 
with ( )T sθ ψ  in Eq. (35), this paper considers the 
case that : S Fψ →  is the feature map associated 
with the Gaussian Mercer kernel :k S S R× →  (For 
details on the Mercer kernels, see e.g., [12]). Hence, 
in the corresponding feature space F , the following 
‘kernel trick’ holds true [12]: 
 

2 2
0( ), ( ) ( , ) exp( / 2 )x z k x z x zψ ψ σ< >= = − −  (36) 

From the chain rule, one can compute the following 
gradient: 
 

2log ( | ) ( ( )) ( ) /T
t t t t ta s a s sθ θπ θ ψ ψ σ∇ = −  (37) 

 
Hence, the update rule Eq. (33) can now be written as 
follows: 
 

1

~
2

[ ( )]

(TD )( ( )) ( ) /

tt t

T
tt t t t

J

a s s

θ θ θθ θ α θ

θ α θ ψ ψ σ

+ =← + ∇

≈ + −
 (38) 

 
According to this update rule, the actor parameter tθ  
can be represented in the following form: 

 
1

1

( ),
t

t i i
i

c sθ ψ
−

=

=∑  (39) 

 
where 

~
2(TD )( ( )) /T

ii i i ic a sα θ ψ σ−  is the coeffi-
cient introduced for simpler notation. Note that Eq. 
(39) corresponds to the so-called ‘representer 
theorem’ widely used in kernel methods [12]. Now by 
plugging Eq. (39) into Eq. (37) and then applying the 
kernel trick of Eq. (36) to the result, one can obtain 
the following nonparametric policy gradient: 

 

1
2

1

log ( | )

( , ) ( ) /

t t

t

t i i t t
i

a s

a c k s s s

θ θπ

ψ σ
−

=

∇

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑
 (40) 

 
Also, the actor distribution at time t  becomes 
 

21
2

1

( | )

1 exp ( , ) / 2 .
2

t t

t

t i i t
i

a s

a c k s s

θπ

σ
σ π

−

=

⎧ ⎫⎪ ⎪⎛ ⎞= − −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑
 (41) 

 
Here the mean of the Gaussian, 1

1
( , )t

i i ti
c k s s−

=∑ , is 
nonparametric. 

Considering the function form of the above actor 
distribution, there are things in its present form we 
need to worry about - growing sample sizes. To 
overcome this difficulty with a more parsimonious 
representation, we adopt the so-called ALD (appro-
ximate linear dependency) analysis [20]. The 
sparsification procedure using the ALD analysis can 
be summarized as follows [20]: First, we assume that 
after having observed samples 0 1, , ts s −L , we have 
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collected a dictionary consisting of a subset of the 
samples 1 1

1 1 1{ } { }tm t
t i i i iD s s− −
− = == ⊂% . Entries of the dic-

tionary are required of the property that 1
1{ ( )} tm

i isψ −
=%  

are linearly independent. When a new sample ts  is 
given, we test whether ( )tsψ  is approximately 
linearly dependent on the previous dictionary vectors 
by  

 
1

0 1

2

{ , , }
0

min ( ) ( ) ,
t

mt

m

t a a i i t
i

a s sδ ψ ψ υ
−

−
=

− ≤∑L
%  (42) 

 
where 0υ >  is a user-defined accuracy parameter. 
The optimization problem in Eq. (42) can be easily 
transformed into a convex quadratic program by use 
of the kernel trick of Eq. (36), thus solving it is 
straightforward. Also, if the ALD condition of Eq. 
(42) is met by the new sample ts , ( )tsψ  can be 
safely approximated as follows: 

 
1

*

0

( ) ( ),
tm

t i i
i

s a sψ ψ
−

=

≈∑ %  (43) 

where 
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t

t
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m

m

a a i i t
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−

−

−
=
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L

%
 (44) 

In the otherwise case (i.e., when it turns out that 
( )tsψ  is not approximately linearly dependent on the 

feature vectors of the samples in dictionary 1tD − ), we 
add it to the dictionary (i.e., 1 { }t t tD D s−← ∪ ). In this 
way, all samples up to time t  can be approximated 
as linear combinations of the vectors in tD . 
Consequently, the actor parameter tθ  and distri-
bution ( | )

t t ta sθπ  can be safely approximated as 
follows, and in the process of updating the actor 
parameter, we can use the following sparse 
representation for Eq. (38): 

 
1

0

( )
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t i i
i
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 (46) 

More details on the steps for sparsification via ALD 
analysis are well described in [20]. 

 
3.4 Algorithm 

The algorithm considered in this paper can be 
summed up as repeating two tasks: An agent-
environment interaction task in which the agent 
interacts with its environment with an action ge-
nerated by the current policy and observes the 
consequence of the interaction, and a task for the 
value estimation and action improvement in which 
the agent optimizes its policy by updating the actor 
and critic parameters on the basis of the non-
parametric policy gradient and the recursive least-
squares. More precisely, the sequence of the 
considered algorithm is as follows: 

 
Given: 

-  2 2
0( , ) exp( / 2 )k x z x z σ= − − , Gaussian kernel 

function, in use for the actor distribution 
-  Basis functions 1( ) [ ( ) ( )]T

Ks s sφ φ φ L  in use 
for ( ) ( )T

vV s s vφ%  , which approximates the state 
value function 

-  Forgetting factor (0,1)β ∈  
-  Discount rate (0,1)γ ∈  
-  Trace-decay parameter [0,1]λ ∈  
- Constant 0δ >  
- Accuracy parameter υ  for determining the level 

of sparsity in kernel expansion 
 

Initialize the state and learning parameters. Also, 
set the dictionary to be a null set. 
 
for : 0,1,2,t = L  do 

(1)  According to the current state ts , compute 
( | )

t t ta sθπ . Then, draw a control action ta  
from the distribution ( | )

t tsθπ ⋅ . 
(2)  Take the action ta , and observe the reward tr  

and the next state 1ts + . 
(3)  Use the RLS-TD( λ ) rules Eqs. (27) and (28) to 

update tv  of the critic. 
(4)  Compute the temporal difference of Eq. (34). 
(5)  Check the ALD condition by computing tδ  of 

Eq. (42). If tδ υ< , ( )tsψ  is approximated as 
in Eq. (43). If not, ts  is added to the dictionary. 

(6)  Use Eqs. (38), (45) and (46) to update the actor 
distribution.  

end 
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4. Simulations and experimental results 

A large number of previous studies about RL-based 
algorithms have been confined to theoretical appli-
cations such as the inverted pendulum control or a 
few robotics problems. However, this paper explores 
practical implementation of the developed RL-based 
method on a real system: a tunnel ventilation system. 
The proposed control algorithm is verified with 
computer simulations. Simulation data were gathered 
from a real tunnel system, Dunnae Tunnel located in 
Youngdong highway in Korea. The states measured 
by the sensors consist of CO pollutant levels, VI, and 
pollutant emission rate by passing vehicles. It is noted 
that only the CO level and pollutant emission rate is 
considered in the control design and adding a VI level 
to the control algorithm is quite straightforward.  

To solve the continuous state space problem in RL, 
a linear function approximator is used for the state 
value function estimator in the critic. It is designed as 
a linear combination of three basis components 
parameterized by a weight vector like the following: 

 
( ) ( )T

vV s s vφ%   (47) 
 
where 1 2( ) [ ( ) ( ) 1]T s s sφ φ φ=  is used as the basis 
vector. The first component of the basis 1( )sφ  is the 
normalized difference of the CO sensor feedback 
from an allowable reference CO pollutant level, 25 
ppm in this study. The second basis 2 ( )sφ  is the 
normalized difference between the average reference 
emission rate and currently observed emission rate. 
The third component is a bias term. The control 
output of the proposed algorithm is the relative 
number of running jet-fans to the nominal number of 
which the jet-fans are operated under the condition of 
nominal pollutant level. The total number of jet-fans 
which can be driven is 32 and the nominal number is 
chosen as 15. In the actor module, a normal 
distribution is employed as the density ( | )a sθπ  that 
governs the control output selection. The actual action 
a  is chosen by exploring a range around the mean 
point, which is determined by the kernel-based 
functional expression ( )T sθ ψ  with a density 
function expressed as 
 

2

2

1 ( ( ))( | ) exp
22

Ta sa sθ
θ ψπ
σσ π

⎧ ⎫− −= ⎨ ⎬
⎩ ⎭

 (48) 

 
where the variance σ  is constant. The selected 

control output corresponding to the relative number 
of running jet-fans has the critical role of determining 
the wind velocity in the force balance equation, Eq. 
(3). With the wind velocity and the measured 
emission rate, the distribution of pollutants is 
identified in the governing equation, Eq. (2). 

As mentioned in section 3, the purpose of the 
learning agent is to obtain a policy that can maximize 
the discounted sum of rewards. Therefore, the reward 
formulation is a main criterion for the RL process and 
an important connection between the control 
algorithm and the system. The reward reflects the 
objective to be achieved by the controller and a 
penalty for violating a constraint of the system. In this 
study, the reward has been constructed by combining 
the pollutant reduction term as the objective with the 
energy consumption term as the constraint. In Eq. 
(49), the pollutant level over an allowable limit and 
the energy consumption proportional to the number of 
running jet-fans are combined with a weighting factor, 
K . 

 

{ }( )

reward ,if

,if

current ref JF

current ref

JF current ref

CO CO K E

CO CO

E CO CO

⎧− − + ⋅
⎪⎪= >⎨
⎪− <⎪⎩

 (49) 

 
where refCO  is the allowable reference CO pollutant 
level, 25ppm, currentCO  is the current CO sensor 
feedback, and JFE  is the energy consumed by the 
operation of jet-fans. In RL methodology, reward 
usually does not have any unit or dimension but is 
given as a real number. In Eq. (49), K

 
is just a 

simple weighting factor between the two control 
criteria in reward formulation; thus it has no unit. 

The proposed approach was applied to the target 
system with the following parameters: 

 
- Initial value function parameter vector 

0 [0 0 0]Tv =  
- Learning rate 0.5α =  
- Forgetting factor 0.99β =  
- Discount rate 0.5γ =  
- Trace-decay parameter 0.5λ =  
- Constant 20δ =  
- Accuracy parameter 0.000004υ =  
- Width of the Gaussian kernel 0 1.0σ =  
- Standard deviation of the actor distribution 

1.5σ =  
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- Reward weighting factor 0.06K =  
 
While a time step is 1 min, simulations are 

implemented for 5000 time steps which are 
equivalent to10 replications of real data for 500 
samples. Fig. 2 shows the peak value of CO inside the 
tunnel for 5000 time steps about the ‘uncontrolled 
case’. Fig. 3 describes the 3-D plot of the pollutant 
distribution for the last 50 time steps. In this study, 
the ‘uncontrolled’ case is defined as when only a 
nominal number of jet-fans, which is chosen as 15 
among the whole 32 jet-fans, is constantly being 
operated. Therefore, the pollutant emission by passing 
vehicles is the only input source to the system. In 
order to obtain the pollutant emission rate, the traffic 
volume information from the real tunnel is used. Then, 
the CO pollutant distribution inside the tunnel is 
determined from the governing equations, Eqs. (2) 
and (3), making use of the real traffic volume  
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Fig. 2. Peak value of CO for the whole 5000 time steps about 
the ‘uncontrolled case’. 
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Fig. 3. 3-D plot of the pollutant distribution for the last 50 
time steps about the ‘uncontrolled case’ (CO vs. time and 
longitudinal distance along tunnel). 

information and various parameters identifying the 
tunnel. In this case, any control input except the 
operation of the nominal number of jet-fans is not 
conducted to ventilate the tunnel. As such, it is shown 
that the maximum CO pollutant level considerably 
exceeds 25ppm, the control objective. 

Using the same actual traffic data as in the case of 
the uncontrolled system, simulations for the 
‘controlled’ system were performed. If control inputs 
based on the RL algorithm are added to the system, 
the performance of the systems in terms of the 
reduction of the CO pollutant level and energy 
consumption is significantly improved. Fig. 4 
describes the learning process of the proposed RL-
based controller through a sample case. As the 
learning progresses, the controller increases the 
number of running jet-fans, such that the CO level is 
maintained under the allowable limit of 25ppm. On 
the other hand, if the CO pollutant is maintained well 
below the allowable limit and excessive energy is 
consumed by running unnecessary overworking jet-
fans, the controller decreases the number of jet-fans 
and saves the energy consumption. These two facts 
explain that the RL-based controller appropriately 
follows the control objectives expressed by the 
reward formulation for this system. After a sufficient 
time is spent for learning, as shown in Fig. 5, the CO 
pollutant level along time axis stays near the 
allowable limit and the energy consumption becomes 
very efficient, which is explained later with a table for 
comparison. In this sample case, the time it takes to 
learn the new system characteristics is approximately 
observed as 2500 steps (2500 min). 
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Fig. 4. Peak value of CO for the whole 5000 time steps about 
the ‘controlled case by the proposed RL-based controller’. 
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Fig. 5. 3-D plot of the pollutant distribution for the last 50 
time steps about the ‘controlled case by the proposed RL-
based controller’ (CO vs. time and longitudinal distance 
along tunnel). 
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Fig. 6. Standard deviations averaged with 10 episodic tasks 
for the proposed controller and a previously developed RL-
based controller. 

 
In order to analyze the performance of the tunnel 

ventilation system quantitatively, the standard 
deviation for the recent 500 samples of peak CO 
values is calculated every 500 steps during the 
learning process. Fig. 6 represents the result of the 
standard deviation analysis averaged with 10 episodic 
tasks for the proposed controller and a previously  

developed RL-based controller [6]. The controllers 
which are trained to achieve the objectives explained 
above should have low standard deviations. Both 
results show the decreasing trend of the standard 
deviations along the time axis. While the previously 
developed controller shows lower standard deviations 
during the early steps, the suggested controller finally 
approaches to lower standard deviations as the 
learning progresses. A more rigorous formulation of 
the proposed action selection policy employing 
nonparametric settings seems to need more steps to be 
optimized at first, however in the end obtains a 
superior performance compared to the conventional 
policy search technique. 

The performance of the proposed control method is 
evaluated with respect to the reduction of CO 
pollutant level and energy consumption. Table 3 
shows the mean value, standard deviation, maximum/ 
minimum value of peak CO level and consumed 
energy during the last 500 time steps averaged with 
10 episodic tasks. Among three cases, the uncon-
trolled case corresponds to Figs. 2 and 3, while the 
controlled case based on the proposed RL method 
does to Figs. 4 and 5. The third case is about the 
previously developed RL-based controller.  

Three cases have similar mean values of the CO 
level. However, the maximum CO levels for the 
controlled cases are lower than that of the uncon-
trolled case. In addition, the energy consumption is 
also lower with the controlled cases. These results 
show that the RL-based control achieves the control 
objectives of pollutant reduction and low energy 
consumption. Moreover, when compared to the pre-
viously developed RL-based controller, the suggested 
controller has lower standard deviations as well as 
lower energy consumption, which means it accom-
plished an improved performance. 
 

  

Table 3. Mean, standard deviation, maximum/minimum value of peak CO level and consumed energy during the last 500 time 
steps averaged with 10 episodic tasks. 
 

CO level (ppm) 
Case 

meanCO  stdCO  maxCO  minCO  
Energy (kWh) 

Uncontrolled (constant operation of 
nominal number of jet-fans) 24.48 2.23 29.71 19.78 3750 

Controlled with the proposed RL-based 
controller 25.05 0.72 27.30 22.59 3396 

Controlled with a previously developed 
RL-based controller  24.34 0.95 27.42 21.87 3617 
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5. Concluding remarks 

In order to control a tunnel ventilation system 
efficiently, a reinforcement learning method based on 
an actor-critic architecture and nonparametric policy 
gradients was used. The recursive least-squares (RLS) 
method was employed for the learning process so as 
to improve the control performance of the system. 
The control objectives included maintaining the 
pollutant concentration level under an appropriate 
limit and minimizing the control effort. By importing 
the objectives into the reward formulation of the RL 
method, a tunnel ventilation controller was designed 
to produce an optimal control input. The proposed 
controller was verified through various simulations 
compared with a previously developed RL-based 
controller. It was confirmed that the RL-based 
method enables high performance of the developed 
system in terms of managing an appropriate pollutant 
concentration level and saving energy consumption, 
and the suggested controller accomplishes higher 
performance than the previous one. 
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